
SingleStore Notebooks
In [1]:
1%%writefile requirements.txt2langchain==0.0.3393openai==1.3.34pdf2image==1.17.05pdfminer==201911256pdfminer.six==202211057pillow_heif==0.13.18tabulate==0.9.09tiktoken==0.5.110unstructured==0.11.011opencv-contrib-python-headless==4.8.1.7812unstructured.pytesseract==0.3.1213unstructured.inference==0.7.15
In [2]:
1%conda install -y --quiet poppler tesseract
In [3]:
1%pip install -r requirements.txt --quiet
In [4]:
1import nltk2nltk.download('punkt_tab')3nltk.download('averaged_perceptron_tagger_eng')
In [5]:
1from langchain.document_loaders import OnlinePDFLoader2 3loader = OnlinePDFLoader("http://leavcom.com/pdf/DBpdf.pdf")4 5data = loader.load()
In [6]:
1from langchain.text_splitter import RecursiveCharacterTextSplitter2 3print (f"You have {len(data)} document(s) in your data")4print (f"There are {len(data[0].page_content)} characters in your document")
In [7]:
1text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)2texts = text_splitter.split_documents(data)3 4print (f"You have {len(texts)} pages")
In [8]:
1%%sql2DROP DATABASE IF EXISTS pdf_db;3CREATE DATABASE IF NOT EXISTS pdf_db;
Out [8]:
Action Required
Make sure to select the pdf_db database from the drop-down menu at the top of this notebook. It updates the connection_url to connect to that database.
In [9]:
1%%sql2DROP TABLE IF EXISTS pdf_docs1;3CREATE TABLE IF NOT EXISTS pdf_docs1 (4 id INT PRIMARY KEY,5 content TEXT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci,6 vector BLOB7);
Out [9]:
In [10]:
1import os2import getpass3 4os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
In [11]:
1import json2import sqlalchemy as sa3from langchain.embeddings import OpenAIEmbeddings4from singlestoredb import create_engine5 6conn = create_engine().connect()7 8embedder = OpenAIEmbeddings()9 10# Fetch all embeddings in one call11embeddings = embedder.embed_documents([doc.page_content for doc in texts])12 13# Build query parameters14params = []15for i, (text_content, embedding) in enumerate(zip(texts, embeddings)):16 params.append(dict(id=i+1, content=text_content, vector=json.dumps(embedding)))17 18stmt = sa.text("""19 INSERT INTO pdf_docs1 (20 id,21 content,22 vector23 )24 VALUES (25 :id,26 :content,27 JSON_ARRAY_PACK_F32(:vector)28 )29""")30 31conn.execute(stmt, params)
Out [11]:
<sqlalchemy.engine.cursor.CursorResult at 0x7ec535dc5e80>
In [12]:
1%%sql2SELECT JSON_ARRAY_UNPACK_F32(vector) as vector3FROM pdf_docs14LIMIT 1;
Out [12]:
In [13]:
1query_text = "Will object-oriented databases be commercially successful?"2 3query_embedding = embedder.embed_documents([query_text])[0]4 5stmt = sa.text("""6 SELECT7 content,8 DOT_PRODUCT_F32(JSON_ARRAY_PACK_F32(:embedding), vector) AS score9 FROM pdf_docs110 ORDER BY score DESC11 LIMIT 112""")13 14results = conn.execute(stmt, dict(embedding=json.dumps(query_embedding)))15 16for row in results:17 print(row[0])
In [14]:
1import openai2 3client = openai.OpenAI()4 5prompt = f"The user asked: {query_text}. The most similar text from the document is: {row[0]}"6 7response = client.chat.completions.create(8 model="gpt-3.5-turbo",9 messages=[10 {"role": "system", "content": "You are a helpful assistant."},11 {"role": "user", "content": prompt}12 ]13)14 15print(response.choices[0].message.content)
In [15]:
1%%sql2DROP DATABASE IF EXISTS pdf_db
Out [15]:
LangChain connector to use SingleStoreDB as your vector database for your apps.
This Notebook can be run in Standard and Enterprise deployments.
This Notebook has been released under the Apache 2.0 open source license.
Launch this notebook in SingleStore and start executing queries instantly.