New

IT Threat Detection, Part 2

Notebook


SingleStore Notebooks

IT Threat Detection, Part 2

Note

This tutorial is meant for Standard & Premium Workspaces. You can't run this with a Free Starter Workspace due to restrictions on Storage. Create a Workspace using +group in the left nav & select Standard for this notebook. Gallery notebooks tagged with "Starter" are suitable to run on a Free Starter Workspace

Install Dependencies

In [1]:

1!pip3 install tensorflow keras==2.15.0 scikit-learn --quiet

In [2]:

1import os2os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'3
4import pandas as pd5import tensorflow.keras.backend as K6from collections import Counter7from sklearn.metrics import accuracy_score, precision_score, recall_score8from sklearn.metrics import confusion_matrix9from tensorflow import keras10from tensorflow.keras.models import Model

We'll define a Python context manager called clear_memory() using the contextlib module. This context manager will be used to clear memory by running Python's garbage collector (gc.collect()) after a block of code is executed.

In [3]:

1import contextlib2import gc3
4@contextlib.contextmanager5def clear_memory():6    try:7        yield8    finally:9        gc.collect()

Load Model

In [4]:

1with clear_memory():2    model = keras.models.load_model('it_threat_model')3
4model.summary()

In [5]:

1with clear_memory():2    # Select the first layer3    layer_name = 'dense'4    intermediate_layer_model = Model(5        inputs = model.input,6        outputs = model.get_layer(layer_name).output7    )

Data Preparation

We'll use the second file we downloaded earlier for testing purposes.

Review Data

In [6]:

1with clear_memory():2    data = pd.read_csv('Thursday-22-02-2018_TrafficForML_CICFlowMeter.csv')3
4data.Label.value_counts()

Clean Data

We'll run a cleanup script from the previously downloaded GitHub repo.

In [7]:

1!python DeepLearning-IDS/data_cleanup.py "Thursday-22-02-2018_TrafficForML_CICFlowMeter.csv" "result22022018"

We'll now review the cleaned data from the previous step.

In [8]:

1with clear_memory():2    data_22_cleaned = pd.read_csv('result22022018.csv')3
4data_22_cleaned.head()

In [9]:

1data_22_cleaned.Label.value_counts()

We'll create a sample that encompasses all the distinct types of web attacks observed on this particular date.

In [10]:

1with clear_memory():2    data_sample = data_22_cleaned[-2000:]3
4data_sample.Label.value_counts()

Get Connection Details

Action Required

Select the database from the drop-down menu at the top of this notebook. It updates the connection_url which is used by SQLAlchemy to make connections to the selected database.

In [11]:

1from sqlalchemy import *2
3db_connection = create_engine(connection_url)

Queries

Next, we'll perform queries on the test dataset and store the predicted and expected results, enabling us to construct a confusion matrix.

In [12]:

1from tqdm import tqdm2import numpy as np3
4y_true = []5y_pred = []6
7BATCH_SIZE = 1008
9for i in tqdm(range(0, len(data_sample), BATCH_SIZE)):10    test_data = data_sample.iloc[i:i+BATCH_SIZE, :]11
12    # Create vector embedding using the model13    test_vector = intermediate_layer_model.predict(K.constant(test_data.iloc[:, :-1]))14    query_results = []15
16    for xq in test_vector.tolist():17        # SQL query here, make sure it returns 'id' column18        query_res = %sql SELECT id, EUCLIDEAN_DISTANCE(Model_Results, JSON_ARRAY_PACK('{{xq}}')) AS score FROM model_results WHERE score IS NOT NULL ORDER BY score ASC LIMIT 50;19        query_results.append(pd.DataFrame(query_res))20
21    for label, res in zip(test_data.Label.values, query_results):22
23        if 'id' not in res.columns:24            print("Column 'id' not found in res.")25            continue26
27        if label == 'Benign':28            y_true.append(0)29        else:30            y_true.append(1)31
32        ids_to_count = [id.split('_')[0] for id in res['id']]33        counter = Counter(ids_to_count)34        # print(counter)35
36        if counter.get('Bru') or counter.get('SQL'):37            y_pred.append(1)38        else:39            y_pred.append(0)

Visualize Results

Confusion Matrix

In [13]:

1import plotly.graph_objs as go2
3# Calculate the confusion matrix4conf_matrix = confusion_matrix(y_true, y_pred)5
6# Create a DataFrame from the confusion matrix7conf_matrix_df = pd.DataFrame(8    conf_matrix,9    columns = ['Benign', 'Attack'],10    index = ['Benign', 'Attack']11)12
13# Create an empty list to store annotations14annotations = []15
16# Define a threshold for text color17thresh = conf_matrix_df.values.max() / 218
19# Loop through the confusion matrix and add annotations with text color based on the threshold20for i in range(len(conf_matrix_df)):21    for j in range(len(conf_matrix_df)):22        value = conf_matrix_df.iloc[i, j]23        text_color = "white" if value > thresh else "black"24        annotations.append(25            go.layout.Annotation(26                x = j,27                y = i,28                text = str(value),29                font = dict(color = text_color),30                showarrow = False,31            )32        )33
34# Create a heatmap trace with showscale set to False35trace = go.Heatmap(36    z = conf_matrix_df.values,37    x = ['Benign', 'Attack'],38    y = ['Benign', 'Attack'],39    colorscale = 'Reds',40    showscale = False41)42
43# Create the figure with heatmap and annotations44fig = go.Figure(45    data = [trace],46    layout = {47        "title": "Confusion Matrix",48        "xaxis": {"title": "Predicted", "scaleanchor": "y", "scaleratio": 1},49        "yaxis": {"title": "Actual"},50        "annotations": annotations,51        "height": 400,52        "width": 40053    }54)55
56fig.show()

In [14]:

1# Create confusion matrix2conf_matrix = confusion_matrix(y_true, y_pred)3
4# Define class labels5class_labels = ['Benign', 'Attack']6
7# Print confusion matrix with labels8print("Confusion Matrix:")9for i in range(len(class_labels)):10    for j in range(len(class_labels)):11        print(f"{class_labels[i]} (Actual) -> {class_labels[j]} (Predicted): {conf_matrix[i][j]}")

Accuracy

In [15]:

1# Calculate accuracy2acc = accuracy_score(y_true, y_pred, normalize = True, sample_weight = None)3precision = precision_score(y_true, y_pred)4recall = recall_score(y_true, y_pred)5
6print(f"Accuracy: {acc:.3f}")7print(f"Precision: {precision:.3f}")8print(f"Recall: {recall:.3f}")

Per Class Accuracy

In [16]:

1# Calculate per class accuracy2cmd = confusion_matrix(y_true, y_pred, normalize = "true").diagonal()3per_class_accuracy_df = pd.DataFrame([(index, round(value,4)) for index, value in zip(['Benign', 'Attack'], cmd)], columns = ['type', 'accuracy'])4per_class_accuracy_df = per_class_accuracy_df.round(2)5display(per_class_accuracy_df)

Predict Values Directly from Model

We achieved excellent results with SingleStoreDB. Now, let's explore what happens when we bypass the similarity search step and make predictions directly from the model. In other words, we'll utilize the model responsible for generating the embeddings as a classifier. We can then compare the accuracy of this approach with that of the similarity search method.

In [17]:

1from tensorflow.keras.utils import normalize2import numpy as np3
4data_sample = normalize(data_22_cleaned.iloc[:, :-1])[-2000:]5y_pred_model = model.predict(normalize(data_sample)).flatten()6y_pred_model = np.round(y_pred_model)

Visualize Results

Confusion Matrix

In [18]:

1# Create confusion matrix2conf_matrix = confusion_matrix(y_true, y_pred_model)3
4# Create a DataFrame from the confusion matrix5conf_matrix_df = pd.DataFrame(6    conf_matrix,7    columns = ['Benign', 'Attack'],8    index = ['Benign', 'Attack']9)10
11# Create an empty list to store annotations12annotations = []13
14# Define a threshold for text color15thresh = conf_matrix_df.values.max() / 216
17# Loop through the confusion matrix and add annotations with text color based on the threshold18for i in range(len(conf_matrix_df)):19    for j in range(len(conf_matrix_df)):20        value = conf_matrix_df.iloc[i, j]21        text_color = "white" if value > thresh else "black"22        annotations.append(23            go.layout.Annotation(24                x = j,25                y = i,26                text = str(value),27                font = dict(color=text_color),28                showarrow = False,29            )30        )31
32# Create a heatmap trace with showscale set to False33trace = go.Heatmap(34    z = conf_matrix_df.values,35    x = ['Benign', 'Attack'],36    y = ['Benign', 'Attack'],37    colorscale = 'Reds',38    showscale = False39)40
41# Create the figure with heatmap and annotations42fig = go.Figure(43    data = [trace],44    layout = {45        "title": "Confusion Matrix",46        "xaxis": {"title": "Predicted", "scaleanchor": "y", "scaleratio": 1},47        "yaxis": {"title": "Actual"},48        "annotations": annotations,49        "height": 400,50        "width": 40051    }52)53
54fig.show()

In [19]:

1# Create confusion matrix2conf_matrix = confusion_matrix(y_true, y_pred_model)3
4# Define class labels5class_labels = ['Benign', 'Attack']6
7# Print confusion matrix with labels8print("Confusion Matrix:")9for i in range(len(class_labels)):10    for j in range(len(class_labels)):11        print(f"{class_labels[i]} (Actual) -> {class_labels[j]} (Predicted): {conf_matrix[i][j]}")

Accuracy

In [20]:

1# Calculate accuracy2acc = accuracy_score(y_true, y_pred_model, normalize = True, sample_weight = None)3precision = precision_score(y_true, y_pred_model)4recall = recall_score(y_true, y_pred_model)5
6print(f"Accuracy: {acc:.3f}")7print(f"Precision: {precision:.3f}")8print(f"Recall: {recall:.3f}")

Per Class Accuracy

In [21]:

1# Calculate per class accuracy2cmd = confusion_matrix(y_true, y_pred_model, normalize = "true").diagonal()3per_class_accuracy_df = pd.DataFrame([(index, round(value,4)) for index, value in zip(['Benign', 'Attack'], cmd)], columns = ['type', 'accuracy'])4per_class_accuracy_df = per_class_accuracy_df.round(2)5display(per_class_accuracy_df)

Conclusions

Utilizing SingleStoreDB's vector embeddings, we achieved an extremely high detection rate for attacks while maintaining a very small false-positive rate. Furthermore, our example showed that our similarity search methodology surpassed the direct classification approach that relies on the classifier's embedding model.

Details


About this Template

Part 2 or Real-time threat Detection - Validate the accuracy of the threat detection model with a test dataset

This Notebook can be run in Standard and Enterprise deployments.

Tags

advancedcybersecurityvectordbiotai

License

This Notebook has been released under the Apache 2.0 open source license.

See Notebook in action

Launch this notebook in SingleStore and start executing queries instantly.