
IT Threat Detection, Part 2
Notebook

Note
This tutorial is meant for Standard & Premium Workspaces. You can't run this with a Free Starter Workspace due to restrictions on Storage. Create a Workspace using +group in the left nav & select Standard for this notebook. Gallery notebooks tagged with "Starter" are suitable to run on a Free Starter Workspace
Install Dependencies
In [1]:
1
!pip3 install tensorflow keras==2.15.0 scikit-learn --quiet
In [2]:
1
import os2
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'3
4
import pandas as pd5
import tensorflow.keras.backend as K6
from collections import Counter7
from sklearn.metrics import accuracy_score, precision_score, recall_score8
from sklearn.metrics import confusion_matrix9
from tensorflow import keras10
from tensorflow.keras.models import Model
We'll define a Python context manager called clear_memory()
using the contextlib module. This context manager will be used to clear memory by running Python's garbage collector (gc.collect()
) after a block of code is executed.
In [3]:
1
import contextlib2
import gc3
4
@contextlib.contextmanager5
def clear_memory():6
try:7
yield8
finally:9
gc.collect()
Load Model
In [4]:
1
with clear_memory():2
model = keras.models.load_model('it_threat_model')3
4
model.summary()
In [5]:
1
with clear_memory():2
# Select the first layer3
layer_name = 'dense'4
intermediate_layer_model = Model(5
inputs = model.input,6
outputs = model.get_layer(layer_name).output7
)
Data Preparation
We'll use the second file we downloaded earlier for testing purposes.
Review Data
In [6]:
1
with clear_memory():2
data = pd.read_csv('Thursday-22-02-2018_TrafficForML_CICFlowMeter.csv')3
4
data.Label.value_counts()
Clean Data
We'll run a cleanup script from the previously downloaded GitHub repo.
In [7]:
1
!python DeepLearning-IDS/data_cleanup.py "Thursday-22-02-2018_TrafficForML_CICFlowMeter.csv" "result22022018"
We'll now review the cleaned data from the previous step.
In [8]:
1
with clear_memory():2
data_22_cleaned = pd.read_csv('result22022018.csv')3
4
data_22_cleaned.head()
In [9]:
1
data_22_cleaned.Label.value_counts()
We'll create a sample that encompasses all the distinct types of web attacks observed on this particular date.
In [10]:
1
with clear_memory():2
data_sample = data_22_cleaned[-2000:]3
4
data_sample.Label.value_counts()
Get Connection Details
Action Required
Select the database from the drop-down menu at the top of this notebook. It updates the connection_url which is used by SQLAlchemy to make connections to the selected database.
In [11]:
1
from sqlalchemy import *2
3
db_connection = create_engine(connection_url)
Queries
Next, we'll perform queries on the test dataset and store the predicted and expected results, enabling us to construct a confusion matrix.
In [12]:
1
from tqdm import tqdm2
import numpy as np3
4
y_true = []5
y_pred = []6
7
BATCH_SIZE = 1008
9
for i in tqdm(range(0, len(data_sample), BATCH_SIZE)):10
test_data = data_sample.iloc[i:i+BATCH_SIZE, :]11
12
# Create vector embedding using the model13
test_vector = intermediate_layer_model.predict(K.constant(test_data.iloc[:, :-1]))14
query_results = []15
16
for xq in test_vector.tolist():17
# SQL query here, make sure it returns 'id' column18
query_res = %sql SELECT id, EUCLIDEAN_DISTANCE(Model_Results, JSON_ARRAY_PACK('{{xq}}')) AS score FROM model_results WHERE score IS NOT NULL ORDER BY score ASC LIMIT 50;19
query_results.append(pd.DataFrame(query_res))20
21
for label, res in zip(test_data.Label.values, query_results):22
23
if 'id' not in res.columns:24
print("Column 'id' not found in res.")25
continue26
27
if label == 'Benign':28
y_true.append(0)29
else:30
y_true.append(1)31
32
ids_to_count = [id.split('_')[0] for id in res['id']]33
counter = Counter(ids_to_count)34
# print(counter)35
36
if counter.get('Bru') or counter.get('SQL'):37
y_pred.append(1)38
else:39
y_pred.append(0)
Visualize Results
Confusion Matrix
In [13]:
1
import plotly.graph_objs as go2
3
# Calculate the confusion matrix4
conf_matrix = confusion_matrix(y_true, y_pred)5
6
# Create a DataFrame from the confusion matrix7
conf_matrix_df = pd.DataFrame(8
conf_matrix,9
columns = ['Benign', 'Attack'],10
index = ['Benign', 'Attack']11
)12
13
# Create an empty list to store annotations14
annotations = []15
16
# Define a threshold for text color17
thresh = conf_matrix_df.values.max() / 218
19
# Loop through the confusion matrix and add annotations with text color based on the threshold20
for i in range(len(conf_matrix_df)):21
for j in range(len(conf_matrix_df)):22
value = conf_matrix_df.iloc[i, j]23
text_color = "white" if value > thresh else "black"24
annotations.append(25
go.layout.Annotation(26
x = j,27
y = i,28
text = str(value),29
font = dict(color = text_color),30
showarrow = False,31
)32
)33
34
# Create a heatmap trace with showscale set to False35
trace = go.Heatmap(36
z = conf_matrix_df.values,37
x = ['Benign', 'Attack'],38
y = ['Benign', 'Attack'],39
colorscale = 'Reds',40
showscale = False41
)42
43
# Create the figure with heatmap and annotations44
fig = go.Figure(45
data = [trace],46
layout = {47
"title": "Confusion Matrix",48
"xaxis": {"title": "Predicted", "scaleanchor": "y", "scaleratio": 1},49
"yaxis": {"title": "Actual"},50
"annotations": annotations,51
"height": 400,52
"width": 40053
}54
)55
56
fig.show()
In [14]:
1
# Create confusion matrix2
conf_matrix = confusion_matrix(y_true, y_pred)3
4
# Define class labels5
class_labels = ['Benign', 'Attack']6
7
# Print confusion matrix with labels8
print("Confusion Matrix:")9
for i in range(len(class_labels)):10
for j in range(len(class_labels)):11
print(f"{class_labels[i]} (Actual) -> {class_labels[j]} (Predicted): {conf_matrix[i][j]}")
Accuracy
In [15]:
1
# Calculate accuracy2
acc = accuracy_score(y_true, y_pred, normalize = True, sample_weight = None)3
precision = precision_score(y_true, y_pred)4
recall = recall_score(y_true, y_pred)5
6
print(f"Accuracy: {acc:.3f}")7
print(f"Precision: {precision:.3f}")8
print(f"Recall: {recall:.3f}")
Per Class Accuracy
In [16]:
1
# Calculate per class accuracy2
cmd = confusion_matrix(y_true, y_pred, normalize = "true").diagonal()3
per_class_accuracy_df = pd.DataFrame([(index, round(value,4)) for index, value in zip(['Benign', 'Attack'], cmd)], columns = ['type', 'accuracy'])4
per_class_accuracy_df = per_class_accuracy_df.round(2)5
display(per_class_accuracy_df)
Predict Values Directly from Model
We achieved excellent results with SingleStoreDB. Now, let's explore what happens when we bypass the similarity search step and make predictions directly from the model. In other words, we'll utilize the model responsible for generating the embeddings as a classifier. We can then compare the accuracy of this approach with that of the similarity search method.
In [17]:
1
from tensorflow.keras.utils import normalize2
import numpy as np3
4
data_sample = normalize(data_22_cleaned.iloc[:, :-1])[-2000:]5
y_pred_model = model.predict(normalize(data_sample)).flatten()6
y_pred_model = np.round(y_pred_model)
Visualize Results
Confusion Matrix
In [18]:
1
# Create confusion matrix2
conf_matrix = confusion_matrix(y_true, y_pred_model)3
4
# Create a DataFrame from the confusion matrix5
conf_matrix_df = pd.DataFrame(6
conf_matrix,7
columns = ['Benign', 'Attack'],8
index = ['Benign', 'Attack']9
)10
11
# Create an empty list to store annotations12
annotations = []13
14
# Define a threshold for text color15
thresh = conf_matrix_df.values.max() / 216
17
# Loop through the confusion matrix and add annotations with text color based on the threshold18
for i in range(len(conf_matrix_df)):19
for j in range(len(conf_matrix_df)):20
value = conf_matrix_df.iloc[i, j]21
text_color = "white" if value > thresh else "black"22
annotations.append(23
go.layout.Annotation(24
x = j,25
y = i,26
text = str(value),27
font = dict(color=text_color),28
showarrow = False,29
)30
)31
32
# Create a heatmap trace with showscale set to False33
trace = go.Heatmap(34
z = conf_matrix_df.values,35
x = ['Benign', 'Attack'],36
y = ['Benign', 'Attack'],37
colorscale = 'Reds',38
showscale = False39
)40
41
# Create the figure with heatmap and annotations42
fig = go.Figure(43
data = [trace],44
layout = {45
"title": "Confusion Matrix",46
"xaxis": {"title": "Predicted", "scaleanchor": "y", "scaleratio": 1},47
"yaxis": {"title": "Actual"},48
"annotations": annotations,49
"height": 400,50
"width": 40051
}52
)53
54
fig.show()
In [19]:
1
# Create confusion matrix2
conf_matrix = confusion_matrix(y_true, y_pred_model)3
4
# Define class labels5
class_labels = ['Benign', 'Attack']6
7
# Print confusion matrix with labels8
print("Confusion Matrix:")9
for i in range(len(class_labels)):10
for j in range(len(class_labels)):11
print(f"{class_labels[i]} (Actual) -> {class_labels[j]} (Predicted): {conf_matrix[i][j]}")
Accuracy
In [20]:
1
# Calculate accuracy2
acc = accuracy_score(y_true, y_pred_model, normalize = True, sample_weight = None)3
precision = precision_score(y_true, y_pred_model)4
recall = recall_score(y_true, y_pred_model)5
6
print(f"Accuracy: {acc:.3f}")7
print(f"Precision: {precision:.3f}")8
print(f"Recall: {recall:.3f}")
Per Class Accuracy
In [21]:
1
# Calculate per class accuracy2
cmd = confusion_matrix(y_true, y_pred_model, normalize = "true").diagonal()3
per_class_accuracy_df = pd.DataFrame([(index, round(value,4)) for index, value in zip(['Benign', 'Attack'], cmd)], columns = ['type', 'accuracy'])4
per_class_accuracy_df = per_class_accuracy_df.round(2)5
display(per_class_accuracy_df)
Conclusions
Utilizing SingleStoreDB's vector embeddings, we achieved an extremely high detection rate for attacks while maintaining a very small false-positive rate. Furthermore, our example showed that our similarity search methodology surpassed the direct classification approach that relies on the classifier's embedding model.

Details
About this Template
Part 2 or Real-time threat Detection - Validate the accuracy of the threat detection model with a test dataset
This Notebook can be run in Standard and Enterprise deployments.
Tags
License
This Notebook has been released under the Apache 2.0 open source license.
See Notebook in action
Launch this notebook in SingleStore and start executing queries instantly.